DEACERO

LATIN AMERICA EPD®

Pre-stressed steel rope manufactured from steel scrap

Environmental Product Declaration In accordance with ISO 14025:2006 and EN 14804:2012

1.	
Programme:	The International EPD [®] System
	EPD registered through the fully aligned regional
	programme/hub:
	EPD Latin America
Programme operator:	EPD International AB
	Regional Hub: EPD Latin America
EPD registration number:	S-P-01237
Issue date:	2018-11-08
Validity date:	2023-11-06
	An EPD should provide current information and may be
	updated if conditions change. The stated validity is therefore
	subject to the continued registration and publication at
	www.environdec.com
Revision date:	2018-11-07
Geographical scope:	Mexico

Content

1.	DEACERO
2.	General Information
3.	Product Description
4.	Content declaration
5.	LCA Rules
	5.1 Declared unit
	5.2 System boundary7
	5.3 Manufacturing process
	5.4 Assumptions
	5.5 Cut-off criteria
	5.6 Allocation
	5.7 Time representativeness
	5.8 Data quality assessment
6.	Environmental performance11
	6.1 Use of resources
	6.2 Potential environmental impact
	6.3 Waste production
7.	Verification and registration14
8.	Contact information
9.	References

1. DEACERO

DEACERO is a world-class company that produces a wide range of steel products. Through productivity, excellence in quality and innovation in its products, as well as the focus on customer service, DEACERO has managed to meet the needs of local and international markets, positioning itself as a leader in the field.

DEACERO is a 100% Mexican company that

has managed to transform and grow firmly to efficiently respond to the demands of an international market of high level of competition in more than 20 countries in America and Europe.

The quality of DEACERO is a tradition in the market, therefore, it has invested in more training, better products and in integrated production processes that allow serving the agricultural, industrial, construction and domestic sectors.

DEACERO conceives sustainability in its three dimensions: social, economic and environmental, in relation to the latter, it is a company that takes care of the environment of the communities through advanced water, air and soil protection systems. DEACERO conceives progress as productivity that develops with an ecological sense.

DEACERO is strongly committed to a sustainable strategy of growth that benefits the company, the environment, their employees and the communities in which operates. DEACERO is a fully integrated company with an infrastructure for recycling, processing waste, steel mills, finished

product plants and distribution centers.

As an organization DEACERO strives for physical health and implementation of values, smart use of natural resources, and stable growth together with their customers and suppliers. The company owns developments in advanced technology for steel recycling facilities and its transformation to finish products.

This Environmental Product Declaration (EPD) is in accordance with ISO 14025 and EN 15804, for pre-stressed steel rope manufactured from steel scrap.

EPD of constructions products may not be comparable if they do not comply with EN 15804 Sustainability of constructions works – Environmental product declarations – Core rules for product category of construction products.

Environmental product declarations within the same product category from different programs may not be comparable.

2. General Information

Product	Pre-stressed steel rope manufactured from steel scrap
	DEACERO S.A.P.I. de C.V.
	Avenida Lázaro Cárdenas, Zona Loma Larga Oriente,
Declaration owner	San Pedro Garza García, Nuevo León, México. C.P. 66266
	www.deacero.com
	Contact person: Daniel Armando Guajardo Hernández
	dguajardo@deacero.com
Description of the	Pre-stressed steel rope is made from stranded steel wires
construction product	allowing the construction of structures in dimensions higher to
	those made from conventional steel reinforcement.
Declared Unit	1 ton of pre-stressed steel rope
Construction product	Central Product Classification: CPC 4124
identification	Bars and rods, hot rolled, of iron or steel.
Description of the main	100% steel manufactured from steel scrap
product components and or materials	
Life cycle stages not	Distribution, use, end of life
considered	Distribution, use, end of me
	This EPD is based on information modules that do not cover
	the aspects of use and end of life of the product. It contains in
	detail, for Module A1, A2 and A3:
	- Product definition and physical data
Content of the declaration	- Information about raw materials and origin
	- Specifications on manufacturing of the product
	- Notes on product processing
	- LCA based on a declared unit, cradle-to-gate
	- LCA results
	- Evidence and verifications
For more information consult	www.deacero.com/en/
Site for which this EPD is	Celaya plant:
representative	Carretera 45 Panamericana tramo Celaya -Salamanca Km 64.8
•	Poblado de Chinaco, Villagrán, Guanajuato C.P. 38080, México.
Public intended	B2B (Business to Business)

3. Product Description

The pre-stressed steel rope is made of six twisted steel cables through a central cable, twisted helically in braided constructions of 1x3, 1x7 and 1x19 allowing the construction of structures in dimensions higher to those made from conventional steel reinforcement. DEACERO produces the pre-stressed steel rope with electric arc furnace technology in Celaya, Guanajuato, following the manufacturing standard NMX-C-407-ONNCCE-2001 (DEACERO, 2018).

- Airport runways
- Building and parking lot slabs
- Storage and industrial parks facilities

Features

- 6 wires stranded across a central wire
- Post-formation that ensures union between wires
- Thermal treated

Advantages

- Better resistance to tension over time
- Allows for better foundations
- Bigger space between columns and budget cost savings

Diameter		Breaking resistance (min)		Nominal area		Weight		Yield strength at 1%		Elongation	
In	mm	kg	lb-f	in ²	mm²	kg/1 000 m	lb/1 000 ft	kg	lb-f	% (min)	
0.375 (3/8")	9.53	10 430	23 000	0.09	54	432	290	9 388	20 700	3.5	
0.500 (1/2")	12.7	18 730	41 300	0.15	98	775	520	16 850	37 170	3.5	
0.600"	15.2	26 757	58 600	0.22	140	1 102	740	23 915	52 740	3.5	

Table 1. Technical specifications

4. Content declaration

The pre-stressed steel rope manufactured by DEACERO is made of 100% low alloyed steel manufactured in electric arc furnace with 94% recycled material.

The typical composition of the low alloyed steel is presented in Table 2.

of low alloyed steel
Typical content
94.6 %
3.4%
1.4%
0.2%
0.1%
< 0.1%
0.3%

-	3

5. LCA Rules

Environmental potential impacts were calculated according to EN 15804:2012 and PCR 2012:01 Construction products and construction services Version 2.2 (2017-05-30). This EPD is in accordance with ISO 14025:2006.

Environmental potential impacts were calculated through Life Cycle Assessment (LCA) methodology according to ISO 14040:2006 and ISO 14044:2006. An external third-party critical review process of the LCA was conducted according to ISO/TS 14071:2014.

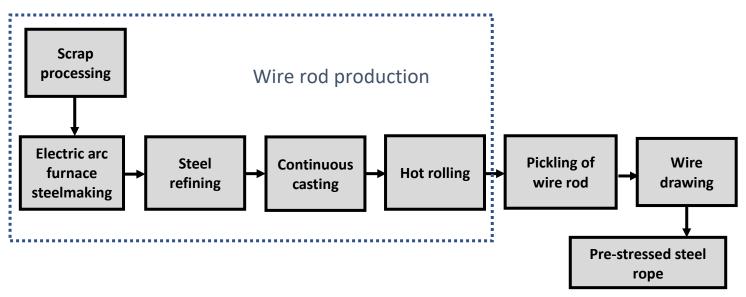
5.1 Declared unit

One metric ton of pre-stressed steel rope manufactured from steel scrap.

5.2 System boundary

This is a cradle to gate EPD. The following life cycle stages were considered: A1 - Raw materials supply, A2 - Transport, A3 - Manufacturing. Excluded lifecycle stages are construction process, use and end-of-life. The description of the system boundary is presented in Table 3

	Table 3. Pre-stressed steel rope product system.									
Environme		Additional environmental information								
	A1 - A3		A4	- A5	B1 - B7	C1 - C4		D		
Product stage			Construc	Construction stage		End-of-life stage		Reuse and recovery		
A1	A2	A3	A4	A5	B1 - B7	C1 - C4				
Wire rod manufacturing. Generation of electricity and production and processing of natural gas used during manufacturing.	Transport of steel scrap, transport of other raw materials, transport of auxiliary inputs from the production site to the DEACERO plant and internal transports.	Production and consumption of auxiliary materials: oxygen, argon, nitrogen, oil, grease, etc. Waste transport and waste treatment. Emissions to air and water from the operations of DEACERO.	Product distribution	Construction and instalation	Use, maintenance, replacement, refurbishment on, repair, use of energy and water during the operation.	Demolition, deconstruc- tion, transport, waste processing and final disposal.		Reuse- recovery- recycling potential		
x	Х	Х	MND	MND	MND	MND		MND		
	(Cradle-to-gate) Declared unit									


Table 3. Pre-stressed steel rope product system.

(X = included in LCA; MND = Module Not Declared).

5.3 Manufacturing process

The manufacturing process of pre-stressed steel rope by DEACERO is described in Figure 1.

Figure 1. Flow diagram of the manufacturing process of pre-stressed steel rope.

5.4 Assumptions

- It was considered the most representative scrap yard for scrap collection, being that of Mexicali, assuming that all scrap yards operate in the same way.
- The packing material of ferroalloys is made of polypropylene bags.
- Plastic waste is recycled in the municipality of Monterrey at a distance of 251 km from Celaya.
- Hazardous waste is spent oil and impregnated solids.
- The hazardous waste is confined in Monterrey at a distance of 251 km from Celaya.
- The pickling supplies are transported in drums and plastic containers, from Celaya, Guanajuato.
- Powdered lubricants are transported in drums and metal trays, from Italy.

5.5 Cut-off criteria

A minimum of 95% of the total flows (matter and energy) in the A1 and A3 modules were included. Company infrastructure, employee's transportation and administrative activities were kept out of the scope of this study.

5.6 Allocation

In this study, allocation of inputs and outputs of the system between product and coproducts was based on a mass relation, considering the quantity produced per year of each product and coproduct at the level of unit process.

Table 4 shows the coproducts obtained during pre-stressed steel rope manufacturing process.

Table 4. Coproduct generated during pre-stressed steel rope manufacturing process.

Unit process	Coproduct
Electric Arc Furnace	Slag and steel scale
Hot rolling	Steel scale

The polluter pays principle was applied for the allocation procedure during recycling. In this way, in each case when there was an input of secondary material to the pre-stressed steel rope product system, recycling process and transportation to the site were included in life cycle inventory (for example, steel scrap). In those cases, in which output of material to recycling were presented, material transportation to recycling plant was included. This principle was applied to plastic and metal containers recycled by a third party.

For generic data Mexicaniuh and Ecoinvent 3.3 (Allocation - Recycled Content version) databases were used.

5.7 Time representativeness

Direct data obtained from DEACERO is representative for 2017.

5.8 Data quality assessment

Data quality assessment per information module is provided in Tables 5, 6 and 7.

Data quality Data	Time related coverage	Geographical coverage	Technological covegare	Data source	Measured or estimated
Raw materials consumption	2017	Mexico	Modern	DEACERO	М
Transport distance of scrap to DEACERO scrap yard	2017	Mexico	Modern	DEACERO	М
Consumption of energy and materials for the processing of scrap in scrap yards, as well as waste and generated emissions	2017	Mexico	Modern	DEACERO	М
Consumption of fuels and emissions related to the generation and distribution of electricity in Mexico	2017	Mexico	Mexican energy mix	Mexicaniuh	M&E
Energy consumption and generation of emissions related to natural gas production in Mexico	2017	Mexico	Mexican context	Mexicaniuh	M&E
Consumption of energy and materials for the manufacture of raw materials for the steelworks	1990- 2016	European	Modern	Ecoinvent 3.3	M&E

Table 5. Raw material supply module data quality assessment.

Table 6. Transport module data quality assessment.

Data quality Data	Time related coverage	Geographical coverage	Technological covegare	Data source	Measured or estimated
Transport distance of scrap and other raw materials	2017	Mexico	Not Applicable	DEACERO	М
Transport distance of auxiliary supplies	2017	Mexico	Not Applicable	DEACERO	М
Transport distance of maintenance materials	2017	Mexico	Not Applicable	DEACERO & Google Maps	М
Transport distance of natural gas	2017	Mexico	Not Applicable	DEACERO & Google Maps	M&E
Consumption of materials and energy and emissions related to the transport requirements of raw materials and auxiliary inputs.	1992- 2014	World average based on Europe	World average based on Europe	Ecoinvent 3.3	M&E

Data quality Data	Time related coverage	Geographical coverage	Technological covegare	Data source	Measured or estimated
Production efficiency and generation of by- products.	2017	Mexico	Modern	DEACERO	М
Consumption of auxiliary materials during manufacturing	2017	Mexico	Modern	DEACERO	M&E
Consumption of energy and materials for the manufacture of auxiliary materials	1990 – 2016	World average based on Europe	World average based on Europe	Ecoinvent 3.3	M&E
Generation of waste during manufacturing	2017	Mexico	Modern	DEACERO	М
Consumptions of materials and related energy during waste treatment	1990 - 2016	World average based on Europe	World average based on Europe	Ecoinvent 3.3	M&E
Emissions to air and water during the manufacturing process	2017	Mexico	Modern	DEACERO EPA AP42	M&E
Distance for waste transportation	2017	Mexico	Modern	DEACERO & Google Maps	M&E
Consumption of materials and energy and emissions related to waste transport requirements	1992-2014	World average based on Europe	World average based on Europe	Ecoinvent 3.3	M&E

Table 7. Manufacturing module data quality assessment.

6. Environmental performance

SimaPro 8.4 was used for Life Cycle Impact Assessment

6.1 Use of resources

Parameters describing resource use were evaluated with the Cumulated Energy Demand method version 1.09 (Frischknecht et al. 2007) except for the indicator of use of net fresh water that was evaluated with Recipe 2016 Midpoint (H) version 1.00 (Huijbregts et al. 2017). The detailed description of the use of resources is provided in Table 8.

Table 8. Resource indicators per metric ton of pre-stressed steel rope.

Parameter	Unit	Total	A1) Raw materials supply	A2) Transport	A3) Manufacturing
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ	411	404	0.12	7.17
Use of renewable primary energy as raw materials	MJ	0	0	0	0
Total use of renewable primary energy resources	MJ	411	404	0.12	7.17
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	10 012	9 925	7.24	79.8
Use of non-renewable primary energy used as raw materials	MJ	0	0	0	0
Total use of non-renewable primary energy resources	MJ	10 012	9 925	7.24	79.8
Use of secondary material	kg	1 092	1 092	0	0
Use of renewable secondary fuels	MJ	0	0	0	0
Use of non-renewable secondary fuels	MJ	0	0	0	0
Use of net fresh water	m³	4.04	2.82	1.5E-3	1.22

6.2 Potential environmental impact

Parameters describing environmental potential impacts were calculated using CML-IA method version 3.04 (Guinee et al. 2001; Huijbregts et al. 2003; Wegener et al. 2008) as implemented in SimaPro 8.4. Water scarcity potential was calculated using AWARE method (Boulay et al. 2018). Table 9 shows the LCA results and Figure 2 depicts the impact contribution per information module.

Table 9. Potential environmenta	l impact indicators per metr	ic ton of pre-stressed steel rope
---------------------------------	------------------------------	-----------------------------------

Impact category	Unit	A1) Raw materials supply	A2) Transport	A3) Manufacturing	Total (A1 - A3)	A4-A5, B1-B2, CI-C4, D
Abiotic resource depletion	kg Sb eq	2.42E-04	7.68E-07	4.55E-05	2.88E-04	
(minerals)	%	84.0%	0.3%	15.8%	100.0%	
Abiotic resource depletion (fossil)	MJ	9 447	7	75	9 529	
	%	99.1%	0.1%	0.8%	100.0%	
Global warming (100y)	kg CO2 eq	637	4.64E-01	22	660	
	%	96.5%	0.1%	3.4%	100.0%	
Ozone layer depletion potential	kg CFC-11 eq	1.08E-04	7.96E-08	7.81E-07	1.09E-04	
	%	99.2%	0.1%	0.7%	100.0%	Modules not
Photochemical oxidant formation	kg C2H4 eq	0.65	1.91E-04	2.51E-03	0.65	declared
	%	99.6%	0.0%	0.4%	100.0%	
Acidification	kg SO2 eq	4.70	5.56E-03	0.05	4.75	
	%	98.9%	0.1%	1.0%	100.0%	
Eutrophication	kg PO4 eq	0.31	6.94E-04	0.01	0.32	
	%	95.7%	0.2%	4.1%	100.0%	
Water correity	m3-eq	2.42E-04	7.68E-07	4.55E-05	2.88E-04	
Water scarcity	%	84.0%	0.3%	15.8%	100.0%	

R

LATIN AMERICA

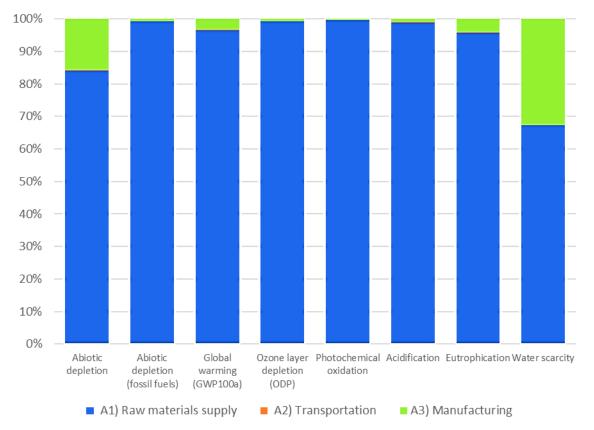


Figure 2. Potential environmental impact contribution per information module

6.3 Waste production

Environmental indicators describing waste generation were obtained from LCI except for background information which has been calculated using EDIP 2003 method (Hauschild and Potting, 2005). Table 10 shows waste and other outputs generated during each information module.

Parameter	Unit	Total	A1) Raw materials supply	A2) Transport	A3) Manufacturing
Hazardous waste	kg	2.01	0.02	4.03E-06	1.99
Non hazardous waste	kg	57.8	56.8	0.18	0.83
Radioactive waste*	kg	0.02	0.02	4.57E-05	3.19E-04
Components for reuse	kg	0	0	0	0
Materials for recycling	kg	0	0	0	0
Materials for energy recovery	kg	0	0	0	0
Exported electricity	MJ	0	0	0	0
Exported heat	MJ	0	0	0	0

Table 10. Waste and other outputs per metric ton of pre-stressed steel rope.

*No radioactive waste is produced during DEACERO operation.

7. Verification and registration

	CEN standard EN 150804 served as the core PCR		
	International EPD® System www.environdec.com		
Programme	EPD registered through the fully aligned regional programme/hub: EPD Latin America www.epdlatinamerica.com		
	EPD International AB Box 210 60 SE-100 31 Stockholm, Sweden		
	EPD Latin America		
Programme operator	Chile: Alonso de Ercilla 2996, Ñuñoa, Santiago, Chile.		
	Mexico: Av. Convento de Actopan 24 Int. 7A, Colonia Jardines de Santa Mónica, Tlalnepantla de Baz, Estado de México, México, C.P. 54 050		
EPD registration	S-P-01237		
number:			
Date of publication	2018-11-08		
(issue):			
Date of validity:	2023-11-06		
Date of revision:	2018-11-07		
Reference year of	2017		
data:			
Geographical scope:	Mexico		
Product group	UN CPC 4124		
classification:			
PCR:	PCR 2012:01 construction products and construction		
	services, Version 2.2 (2017-05-03)		
PCR review was	The Technical Committee of the International EPD [®]		
conducted by:	System. Chair: Massimo Marino.		
	Contact via info@environdec.com		
Independent verification of the	EPD process certification (Internal)		
declaration data,	X EPD verification (External)		
according to ISO 14025:2006.			
External third-party	Claudia A. Peña		
verifier and critical	ADDERE Research & Technology		
reviewer of the LCA:	Approved EPD verifier		
	<u>cpena@addere.cl, claudia@epd-americalatina.com</u>		
Accredited or	The International EPD® System		
approved by:			

LATIN AMERICA

8. Contact information

EPD OWNER

DEACERO S.A.P.I. de C.V. Avenida Lázaro Cárdenas, Zona Loma Larga Oriente, San Pedro Garza García, Nuevo León, México. C.P. 66 266 www.deacero.com

Contact person: Daniel Armando Guajardo Hernández dguajardo@deacero.com

LCA AUTHOR

Center for Life Cycle Assessment and Sustainable Design

Center for Life Cycle Assessment and Sustainable Design - CADIS Bosques De Bohemia 2 No. 9, Bosques del Lago. Cuautitlan Izcalli, Estado de México, México. C.P. 54 766 www.centroacv.mx

Contact person: Juan Pablo Chargoy jpchargoy@centroacv.mx

PROGRAMME OPERATOR

EPD International AB Box 210 60, SE-100 31, Stockholm, Sweden. www.environdec.com

info@environdec.com

EPD registered through the fully aligned regional programme/hub:

EPD Latin America www.epd-latinamerica.com

Chile:

Alonso de Ercilla 2996, Ñuñoa, Santiago Chile.

Mexico:

Av. Convento de Actopan 24 Int. 7A, Colonia Jardines de Santa Mónica, Tlalnepantla de Baz, Estado de México, México, C.P. 54 050

9. References

Boulay AM, Bare J, BeniniL, Berger M, Lathuillière MJ, Manzardo A, Margni M, Motoshita M, Núñez M, Valerie-Pastor A, Ridoutt B, Oki T, Worbe S, Pster S (2018) The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). The International Journal of Life Cycle Assessment. Volume 23, Issue 2, pp 368–378. https://doi.org/10.1007/s11367-017-1333-8

DEACERO (2018a) Pre-stressed rope. Available online: https://www.deacero.com/en/products/prestressed-rope/?categoria_producto=cables-en

EN 15804:2012+A1:2013 (Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products).

EPD International (2017) Construction products and construction services. 2012:01 Version 2.2 2017-05-30. <u>www.environdec.com</u>.

EPD International (2017) General Programme Instructions for the International EPD[®] System. Version 3.0, dated 2017-12-11. www.environdec.com.

Frischknecht R, Jungbluth N, Althaus HJ, Bauer C, Doka G, Dones R, Hischier R, Hellweg S, Humbert S, Köllner T, Loerincik Y, Margni M, Nemecek T (2007) Implementation of Life Cycle Impact Assessment Methods Data v2.0. ecoinvent report No. 3. Swiss Centre for Life Cycle Inventories, Dübendorf.

Guinee JB, Marieke G, Heijungs R, Huppes G, Kleijn R, van Oers L, Wegener S, Suh S, Udo de Haes HA, de Bruijn H, van Duin R, Huijbregts MAJ (2001). Handbook on Life Cycle Assessment, Operational guide to the ISO standards Volume 1, 2a, 2b and 3. Springer Netherlands. DOI 10.1007/0-306-48055-7. Series ISSN 1389-6970

Hauschild M, Potting J (2005) Spatial differentiation in Life Cycle impact assessment - The EDIP2003 methodology. Institute for Product Development Technical University of Denmark.

Huijbregts MAJ, Breedveld L, Huppes G, de Koning A, van Oers L, Suh S (2003) Normalisation figures for environmental life-cycle assessment: The Netherlands (1997/1998), Western Europe (1995) and the world (1990 and 1995). Journal of Cleaner Production, Volume 11, Issue 7. Pages 737-748, ISSN 0959-6526. https://doi.org/10.1016/S0959-6526(02)00132-4.

Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira M, Zijp M, Hollander A, van Zelm R. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. International Journal on Life Cycle Assessment Volume 22 Issue 2. pp 138-147. https://doi.org/10.1007/s11367-016-1246-y

ISO 14025:2006 Environmental labels and declarations -- Type III environmental declarations -- Principles and procedures.

ISO 14040:2006 Environmental management -- Life cycle assessment -- Principles and framework. ISO 14044:2006 Environmental management -- Life cycle assessment -- Requirements and guidelines.

ISO/TS 14071:2014 Environmental management -- Life cycle assessment -- Critical review processes and reviewer competencies: Additional requirements and guidelines to ISO 14044:2006.

UN (2015) Central Product Classification (CPC) Version 2.1. Department of Economic and Social Affairs. Statistics Division. United Nations, New York.

Wegener AS, van Oers L, Guinée JB, Struijs J, Huijbregts MAJ (2008) Normalisation in product life cycle assessment: An LCA of the global and European economic systems in the year 2000. Science of The Total Environment. Volume 390, Issue 1. Pages 227-240. ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2007.09.040.